for $1 \le n \le 5$ and by induction $(n+1)\big(1+(n+2)(n+3)\big) < 3^n$ for $n \ge 6$, contradicting the fact that $(x,y,n) \in S$.

6. Let the sequence x_1, x_2, x_3, \ldots , be defined by $x_1 = a$, where a is a real number, and the recursion $x_{n+1} = 3x_n^3 - 7x_n^2 + 5x_n$ for $n \ge 1$.

Find all values of a for which the sequence has a finite $\overline{\lim}$ as n tends to infinity, and find this limit.

Solved by Arkady Alt, San Jose, CA, USA; Michel Bataille, Rouen, France; and Daniel Tsai, student, Taipei American School, Taipei, Taiwan. We give Bataille's write-up.

Let $f(x)=3x^3-7x^2+5x$ and g(x)=f(x)-x=x(x-1)(3x-4). The sequence $\{x_n\}$, which satisfies $x_{n+1}=f(x_n)$ for all positive integers n, can only converge to a root of g(x)=0. Thus, the only possible finite limits of $\{x_n\}$ are 0,1, and $\frac{4}{3}$. We show that the sequence is convergent if and only if $0 \le a \le \frac{4}{3}$, in which case the limit is 1 except if a=0 and $\lim_{n \to \infty} x_n=0$ or if $a=\frac{4}{3}$ and $\lim_{n \to \infty} x_n=\frac{4}{3}$.

Suppose first a<0. Since g(x)<0 when x<0, it follows that $x_n< x_1=a<0$ for all positive integers n. If $\{x_n\}$ had a finite limit, ℓ , we would have $\ell \leq a$, contradicting the fact that $\ell \in \{0,1,\frac{4}{3}\}$. Thus, $\{x_n\}$ is divergent when a<0. Using the fact that g(x)>0 for $x>\frac{4}{3}$, similar reasoning shows that $\{x_n\}$ is divergent when $a>\frac{4}{3}$.

If $a \in \{0, 1, \frac{4}{3}\}$, then the sequence $\{x_n\}$ is constant.

If $a \in (1,\frac{4}{3})$, then using $f(x)-1=(x-1)^2(3x-1)$ an easy induction shows that $1 < x_{n+1} < x_n$ for all positive integers n. Thus, $\{x_n\}$ is decreasing and bounded, hence convergent. Its limit ℓ satisfies $\ell \geq 1$ and $\ell \in \{0,1,\frac{4}{3}\}$, that is, $\ell=1$.

If $a \in [\frac{1}{3}, 1)$ then $x_2 = f(a) \ge 1$ and $x_2 < \frac{4}{3}$, as the maximum of f on [0,1] is $f(\frac{5}{9}) = \frac{275}{243} < \frac{4}{3}$. From the previous case, we see that $\lim_{n \to \infty} x_n = 1$.

It remains to study the case $a\in (0,\frac{1}{3})$. Then, $\frac{1}{3^{m+1}}\leq a<\frac{1}{3^m}$ for some unique positive integer m. If any of the numbers x_2,x_3,\ldots,x_m is not less than $\frac{1}{3}$, let x_k be the one with the smallest index. Then $\frac{1}{3}\leq x_k<\frac{4}{3}$ and by the previous cases $\{x_n\}_{n\geq k}$ converges to 1 and $\lim_{n\to\infty}x_n=1$. Otherwise, noting that f(x)-3x=x(x-2)(3x-1) is positive for $x\in (0,\frac{1}{3})$, we have

$$x_2 = f(x_1) > 3x_1 = 3a \ge \frac{1}{3^m},$$
 $x_3 = f(x_2) > 3x_2 \ge \frac{1}{3^{m-1}},$
 \dots
 $x_m = f(x_{m-1}) > 3x_{m-1} \ge \frac{1}{3^2},$

and finally $x_{m+1} > \frac{1}{3}$. So $\{x_n\}_{n \geq m+1}$ converges to 1 and again $\lim_{n \to \infty} x_n = 1$.